系统不仅硬件成本高昂,而且会带来惊人的能源消耗。据科技网站techcrunch最新报道,总部位于德国的初创公司塞姆龙最新开发出一种创新的ai芯片设计方法,率先使用新的神经网络控制设备——忆容器为其3d芯片供电。这有可能彻底改变节能计算技术,使消费电子设备更容易获得先进的ai功能。
不同于处理器中的晶体管,塞姆龙的芯片使用电场而不是电流。这些由传统半导体材料制成的忆容器可存储能量并控制电场,不仅提高了能源效率,还降低了制造成本,使消费电子产品更容易运行先进的ai模型。
塞姆龙芯片是一种多层组织结构,核心原理是电荷屏蔽,通过屏蔽层控制顶部电极和底部电极之间的电场。屏蔽层由芯片内存管理,可存储ai模型的各种“权重”。权重本质上就像模型中的旋钮,在训练和处理数据时操纵和微调其性能。
电场方法最大限度地减少了电子在芯片中的运动,减少了能源使用和热量。塞姆龙旨在利用电场的降温特性,在单个芯片上放置数百层电容器,从而大大提高计算能力。
在《自然·电子学》杂志最近发表的一项研究中,塞姆龙芯片展示出显著的能效提升,其实现了超过3500tops/w的卓越能效,超越现有技术35倍至300倍。这一指标表明ai模型训练期间能源消耗将可大幅减少。
尽管还处于早期阶段,但塞姆龙已吸引了著名风投公司的关注,这或对计算资源的未来产生重大影响。
我们在使用电子设备时经常出现“充电焦虑”。这一方面与电池续航不足有关;另一方面也与芯片的能耗较高有关。如今,普通硅基芯片在计算性能、能耗等方面遭遇摩尔定律“天花板”。随着新一代电子产品及各种人工智能设备的不断更新迭代,目前亟待研发出采用新材料、新设计方式的芯片,为消费者提供计算性能更强大、同时更加节能的电子产品。